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Abstract. We discuss the effects of a strong magnetic field in quantum wires. We show how the presence
of a magnetic field modifies the role played by electron electron interaction producing a strong reduction
of the backward scattering corresponding to the Coulomb repulsion. We discuss the consequences of this
and other effects of magnetic field on the Tomonaga-Luttinger liquids and especially on their power-law
behaviour in all correlation functions. The focal point is the rescaling of all the repulsive terms of the
interaction between electrons with opposite momenta, due to the edge localization of the electrons and
to the reduction of the length scale. Because of the same two reasons there are some interesting effects
of the magnetic field concerning the backward scattering due to the presence of one impurity and the
corresponding conductance. As an effect of the magnetic field we find also a spin polarization induced by
a combination of electrostatic forces and the Pauli principle, quite similar to the one observed in large
Quntum Dots.

PACS. 73.21.Hb Quantum wires – 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions,
Luttinger liquid, etc.) – 73.21.La Quantum dots

1 Introduction

In the last 20 years progresses in semiconductor device
fabrication and carbon technology allowed the construc-
tion of several new devices at the nanometric scale and
many novel transport phenomena have been revealed in
mesoscopic low-dimensional structures.

Molecular beam epitaxy allows one to construct in-
teresting two-dimensional devices in heterostructures be-
tween different thin semiconducting layers (a strong elec-
tric field creates a two dimensional electron gas (2DEG)
at the interface) while other techniques (such as the elec-
tron beam lithography) for the deposition of metallic gates
allow us to confine electrons in small devices with control-
lable size and contact transparency [1].

Semiconductor quantum wires (QWs) are quasi one-
dimensional(1D) devices where the electron waves are in
some ways analogous to electromagnetic waves in waveg-
uides. They are made from a 2DEG at the interface of a
GaAs: AlGaAs heterojunction where a quasi one dimen-
sional electron gas can be formed by etching the hetero-
junction into a wire of width, say, 1000 Å [1].

The transport in QWs is connected to three dif-
ferent regimes, the two ones at very low tempera-
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tures correspond to the typical single electron tunnelling
(Coulomb blockade) and to Ballistic Transport (where the
Landauer-Büttiker formalism applies) [2–4] while when
the correlation is strong the Tomonaga-Luttinger [5–8] liq-
uid regime dominates.

Experiments with short one-dimensional (1D)
conductors (QWs, narrow ballistic channels, quantum
point contacts in a 2DEG and carbon nanotubes) have
demonstrated [9,10] that their conductance is quantized
in integer multiples of 2e2/h. However, this simple
step-like form for the conductance as a function of the
Fermi energy, occurs when the transition between the
wide leads and the narrow channel is adiabatic [11].

The ballistic transport characterizes the motion of
electrons in nanometric regions in semiconductor struc-
tures at very high electric field when velocities are much
higher than their equilibrium thermal velocity. We sup-
pose that ballistic electrons are not subjected to scat-
tering with others electrons. A general model for near-
equilibrium ballistic transport is due to the Landauer [3]
and Büttiker [4] contributions that are condensed in the so
called Landauer formula. This formula expresses the con-
ductance of a system at very low temperatures and very
small bias voltages in terms of the quantum mechanical
transmission coefficients. The conductance is calculated
directly from the energy spectrum by relating it to the
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number of forward propagating electron modes at a given
Fermi energy.

Electron transport in QWs attracts considerable in-
terest also because of the fundamental importance of
the electron-electron (e-e) interaction in 1D systems: the
e-e interaction in a 1D system is expected to lead to
the formation of a Tomonaga-Luttinger (TL) liquid with
properties very different from those of the non-interacting
Fermi gas [8,12,13].

In the TL model two types of fermions right movers
and left movers are coupled by an interaction of strength g.
The interaction between electrons in one-dimensional met-
als gives several singular properties not present in conven-
tional (Fermi liquid) metals: (i) a continuous momentum
distribution function n(k), varying with k as |k − kF |α
with an interaction-dependent exponent α, consequence of
the lack of fermionic quasi-particles; (ii) a similar power-
law behaviour in all correlation functions; (iii) charge-spin
separation: the elementary excitations of a TL liquid are
not quasi-particles, with charge e and spin 1/2 but col-
lective charge and spin density fluctuations with bosonic
character, i.e. so-called spinons and holons. These spin
and charge excitations propagate with different velocities
which lead to the separation of spin and charge.

The interest in TL liquids increased in recent years
because of several new physical realizations, includ-
ing quantum Hall edge systems [5,14,15], carbon nan-
otubes [16,17], and semiconductor QWs [18,19] in par-
ticular. Most of these experiments concentrated on the
power-law behavior of the electron tunneling.

The low-energy behavior of Luttinger liquids is dra-
matically affected by impurities and carbon nanotubes en-
able experimentalists nowadays to analyze systems with
a single impurity in an otherwise perfectly pure one-
dimensional metal.

Because of the electron-electron interaction the
backscattering amplitude generated by the impurity grows
at low energy scales, so that the impurity acts as an in-
creasingly high barrier [20]. A power-law singularity of the
2kF density response function in a Luttinger liquid can
confirm this behavior. As a consequence, universal scaling
behavior is expected in the low energy limit, with expo-
nents depending only on bulk parameters of the system,
rather than on the impurity strength.

A Luttinger liquid in strong magnetic field can be
dramatically modified by spin effects. The presence of a
strong magnetic field acting on a many electron system
can induce a spin polarization. In semiconducting devices
this polarization is not an effect of Zeeman coupling but
it could be a result of the Coulomb exchange or a con-
sequence of a transverse electric field always present at
the interface (Rashba effect) [21–23]. In fact the spin or-
bit (SO) coupling due to the electric field in the z di-
rection is stronger than the Zeeman term of interaction
connected to a magnetic field acting on the system be-
cause of the strong reduction of the effective electron
mass (m∗ = 0.068m0). The Zeeman spin splitting term is
g∗µBB where g∗ is the effective magnetic factor for elec-
trons in this geometry (very low in GaAs) and µB is the

Bohr magneton with the bare mass. So the mass renor-
malization reduces by a factor 10 the SO coupling and by
a factor 100 the Zeeman spin splitting.

The spin behavior of an electron liquid under the ef-
fect of a strong magnetic field was accurately studied in a
different nanometric semiconducting device, the quantum
dots (QDs), which are small structures (typically less than
1 µm in diameter) containing from one to a few thousand
electrons. In QDs the electronic spins align when a strong
magnetic field is present and it is known that magnetism
occurs not because of direct magnetic forces (Zeeman cou-
pling or SO coupling), but rather because of a combina-
tion of electrostatic forces and the Pauli principle as was
proven in the last decade in several experiments [25].

In this paper we present a study of the magnetic field
dependence of Luttinger liquids in QWs. In Section 2 we
introduce the model for a QW under the action of a mag-
netic field. In Section 3 we discuss the effect of the mag-
netic field on the kinetic and interaction coefficients as
well as on the derived parameters. In particular we analyze
the effects of the magnetic field on the critical coefficient
α which characterizes the transport of the Wire because
it determines the power law behaviour of the density of
the states. In Section 3 we also discuss the effects of one
impurity by analyzing the effects of magnetic field on the
conductance. In Section 4 we analyze how a spin polar-
ization could be observed in QWs in analogy with what
happens in large QDs; we also discuss the effects on Lut-
tinger liquid behaviour due to the spin polarization which
implies the transition from a spinful Luttinger liquid to a
spinless one.

2 Hamiltonian and microscopic approach

A QW is usually defined by a parabolic confining poten-
tial along one of the directions in the plane [22,23,26]:
V (x) = me

2 ω2
dx2. We also consider a uniform magnetic

field B along the ẑ direction which allows a free choice
in the gauge determination. We choose the gauge so
that the system has a symmetry along the ŷ direction,
A = (0, Bx, 0), so that the single particle Hamiltonian is

H = me
v2

2
+

meω
2
d

2
x2 (1)

where mevy = py − eBx/(mec) and mevx = px.
In order to solve the Hamiltonian for QWs we in-

troduce the cyclotron frequency ωc = eB
mc and the to-

tal frequency ωT =
√

ω2
d + ω2

c and point out that py =
vy + eBx/(mec) commutes with the Hamiltonian

H =
ω2

d

ω2
T

p2
y

2me
+

p2
x

2me
+

mω2
T

2
(x − x0)2, (2)

where x0 = ωcpy

ω2
T me

. The classical Hamilton equations give
us the orbital motion in the special case of vanishing ẋ(0)

x(t) = x0 + R cos(ωT t)
y(t) = vdt − ωc

ωT
R sin(ωT t) + y(0) (3)
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where the drift velocity is vd = ω2
dpy

ω2
T me

. We obtain py =
me(ẏ(0) + ωcx(0)), y(0) = 0 and R = x(0) − x0 from the
boundary conditions. The two different motions along the
Wire are localized on the two different edges, as we can
argue from the introduction of ±py → ±vd. These are also
known in quantum mechanics as edge states [26].

The quantum mechanics approach to the single parti-
cle Hamiltonian in equation (2) gives two term: a quan-
tized harmonic oscillator and a quadratic free particle-like
dispersion. This kind of factorization does not reflect itself
in the separation of the motion along each axis because
the shift in the center of oscillations along x depends on
the momentum ky. Therefore each electron in the system
has a definite single particle wave function

ϕn,ky(x, y) = un (x − x0(ky))
eikyy

√
2πLy

,

un (x − γωk) =
1

σω
√

π
e
− (x−γωk)2

2σ2
ω hn (x − γωk) .

Here hn (x − x0(ky)) is the n Hermite polynomial shifted

by x0(ky) = γωky where γω = ωc�

ω2
T me

and σω =
√

�

meωT
.

In what follows we assume σ0 =
√

�

meωd
(corresponding

to zero magnetic field) as the characteristic length of the
system when the magnetic field vanishes.

Now we are ready to give a simple expression of the
free electron energy depending on both the y momentum
k and the chosen subband n:

εn,k =
ω2

d

2meω2
T

�
2k2 + �ω2

T

(
n +

1
2

)
.

Below we limit ourselves to electrons in a single chan-
nel (n = 0), where N electrons occupy the lowest energy
levels. We obtain the value of the Fermi wavevector as
kF = N

4 δk where δk = 2π
L .

The typical Luttinger model starts from the hypothesis
that the Fermi surface consists of two Fermi points, in
the neighborhood of which the dispersion curve can be
approximated by straight lines with equations

εk ≈ vF (|k| − kF ) ≡ vF k. (4)

In our case we obtain a field-dependent free Fermi velocity

vF =
ω2

d

meω2
T

�kF ≈ ω2
d

meω2
c

�kF , (5)

where the approximation is valid for very strong fields.
We introduce different operators for the electrons be-

longing to each branch: right going operators c†
R,k,s

and

left going ones c†
L,k,s

for electrons with k > 0 (k < 0). In
terms of these operators the free and interaction Hamil-
tonians can be written as

H0 = vF

∑

k,s

kc†
R,k,s

cR,k,s + vF

∑

k,s

kc†
L,k,s

cL,k,s (6)

Hint =
1
L

∑

k,k′,q,s,s′

(
V s,s′

k,p (q)c†k+q,sc
†
p−q,s′cp,s′ck,s

)
. (7)

Here ck ≡ cR,k if k > 0 and ck ≡ cL,k if k < 0, while
V s,s′

k,p (q) is the Fourier transform of the electron electron
interaction.

The scattering processes are usually classified accord-
ing to the different electrons involved and the coupling
strengths labelled with g are often taken as constants. In
fact, as discussed in detail by Solyom [13], we can substi-
tute V s,s′

k,p (q) with 8 constants. In general we should take
into account the dependence on k, p and q, however in a
model with a bandwidth cut-off, where all momenta are
restricted to a small region near the Fermi points, the mo-
mentum dependence of the coupling is usually neglected.

We can write gs,s′
4 for k and p in the same branch

and small q (transferred momentum): gs,s′
4 corresponds to

the forward scattering in the same branch. We use gs,s′
2

for the forward scattering involving two branches where k
and p are opposite and q is small. The backward scattering
(gs,s′

1 ) involves electrons in opposite branches with large
transferred momentum (of order 2kF ). We do not take
into account the effects of Umklapp scattering (gs,s′

3 ).
The model described above, with linear branches and

constant interaction in momentum space is known as TL
model and corresponds to a very short range interaction
(Dirac delta). The presence of a long range interaction
in a 1D electron system introduces in the model an in-
frared divergence and is quite difficult to solve. We re-
ported the solutions for the case of carbon nanotubes
obtained with a Renormalization Group approach and a
dimensional crossover in some recent papers [27], and in
the future we will apply that formalism to the case of a
QW in the presence of magnetic field.

Below we limit ourselves to the TL model and our main
results refer to the short range interaction, with the aim of
giving a qualitative explanation of the effects of a strong
transverse magnetic field.

3 Luttinger liquid parameters

3.1 Effective parameters

All properties of a TL liquid can be described in terms of
only two effective parameters per degree of freedom which
take over in 1D the role of the Landau parameters familiar
from Fermi liquid theory.

In particular the low-energy properties of a homoge-
neous 1D electron system could be completely specified
by the TL coefficients corresponding to the interaction
(gs,σ

i ) and the kinetic energy (vF ) in the limit of ideal TL
liquid.

Four TL parameters, depending on g and vF , char-
acterize the low energy properties of interacting spinful
electrons moving in one channel: the parameter Kν fixes
the exponents for most of the power laws and vν is the
velocity of the long wavelength excitations: ν = ρ for the
charge and ν = σ for the spin. The parameters [24] Kρ

and vρ/σ are easily obtained as functions of gs,σ
i and vF
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by various techniques found in textbooks [13].

Kν =

√
πvF + gν

4 − gν
2

πvF + gν
4 + gν

2

(8)

vν =

√[
vF +

gν
4

π

]2

−
(

gν
2

π

)2

(9)

α =
1
2

[
(vF +

gσ
4

π
)

1
vσ

+ (vF +
gρ
4

π
)

1
vρ

− 2
]

(10)

where gσ
i = 1

2 (g‖i − g⊥i ) and gρ
i = 1

2 (g‖i + g⊥i ). Here α
denotes the critical exponent which characterizes many
properties of the transport behaviour of a 1D device (e.g.
the zero bias conductance as a function of T , which is well
described by a power law behavior G = T α). In this pa-
per we discuss microscopic estimates of the values of these
quantities in semiconductor QWs when a strong trans-
verse magnetic field is present.

3.2 Coupling constants

At the end of the previous section we discussed how the
electron electron repulsion has a very simple and detailed
representation in the TL model [13] where the gs,s′

i co-
efficients contain all the information about the interac-
tion. In this section we want evaluate the g coefficients
which characterize the Hamiltonian equation (7). In order
to do that, we have to calculate the “Fourier transform”
V n,n′

k,k′ (q, ωc) of the effective interaction starting from some
models. This is our crucial problem and gives us the g coef-
ficients. In this article we limit ourselves to the one channel
model (n = n′ = 0) and we introduce the magnetic field
dependent effective potentials

Us,−s
k,p,q (y −y′, ωc) =

∫ ∞

∞
dxdx′U(|r − r′|)

× u0 (x − γωk)u0 (x − γωp)
× u0 (x′ − γω(k + q))u0 (x′ − γω(p − q)) .

These potentials only depend on y − y′ and on the 1D
fermion quantum numbers.

Now we are ready to calculate the “Fourier transform”
in order to obtain V (q). A central question regards the
spin effects on the coupling strength. In the Hartree-Fock
approximation the so called direct term corresponds to
q = 0 (V (0)) while the exchange one corresponds to q =
p−k (V (q)). Is evident that the electron electron repulsion
is less for electrons with the same spin (V ↑↑

q = V (0) −
V (q))than for electrons with opposite spins (V ↑↓

q = V (0)).
In order to analyze the effects of the range of the in-

teraction we introduce a function for the electron electron
potential depending on a parameter r. This general inter-
action model, ranges from the very short range one to the
infinity long range one and eliminates the divergence of

the Coulomb repulsion

U(x − x′, y − y′) =

(
g0σ

2
0/π + g∞r2

)

r2

× exp
[
− (x − x′)2 + (y − y′)2

r2

]
, (11)

where g0 and g∞ are the copuling constant corresponding
to the two different limits of r (r → 0 delta function U =
g0σ

2
0δ(|x−x′|) and constant interaction r → ∞ U = g∞).
So we can calculate Vk,p(q, ωc) by a simple integral

Vk,p(q, ωc) =

(
g0σ

2
0/π + g∞r2

)√
π

Ly

(√
r2 + 2σ2

ω

)

× exp
[
−q2 r2

4
− γ2

ω

(
q2

2σ2
ω

+
(k − p + q)2

r2 + 2σ2
ω

)]
. (12)

Thus we put

g(r, ω) =

(
g0σ

2
0/π + g∞r2

)√
π

Ly

(√
r2 + 2σ2

ω

) .

Some details about the comparison between Coulomb in-
teraction and the model of electron electron interaction in
equation (11) are given in appendix.

Now we are ready to calculate the coefficients in equa-
tion (7).

(a) The so called forward scattering in the same branch
(g4) involves electrons with p ∼ k, i.e. δk = |p− k| � kF :
for parallel spins we have g

‖
4 ≈ Vδk(0) − Vδk(δk) while for

orthogonal spins we just have V (0)

Vδk(0) = g(r, ω) exp
[
−γ2

ω

(
δk2

r2 + 2σ2
ω

)]
≈ g(r, ω).

So we can assume g
‖
4 ≈ 0 and g⊥4 ≈ g(r, ω).

(b) The forward scattering between opposite branches,
which is usually called g2 and corresponds to p ∼ −kF , k ∼
kF → δk ≈ 2kF , where a small momentum is transferred
q ∼ 0, gives as a first approximation

g
‖
2 = g⊥2 ≈ V2kF (0) = g(r, ω) exp

[
−γ2

ω

(
4k2

F

r2 + 2σ2
ω

)]
.

(c) For the backward scattering g1, p ∼ −kF , k ∼
kF → δk ≈ 2kF with a large momentum transferred
q ≈ 2kF , we have

Vδk(0) = g(r, ω) exp
[
−4k2

F

(
r2

4
+

γ2
ω

2σ2
ω

+
4γ2

ω

r2 + 2σ2
ω

)]
.

Now we can discuss the effects of a magnetic field on
the interaction terms and the kinetic coefficient.

I) A strong reduction of the Fermi velocity when the
magnetic field increases is very clear, as displayed in Fig-
ure 1 where vF (ωC) is reported.

II) The forward scattering between electrons in the
same branch increases with the magnetic field as shown
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Fig. 1. Graphic calculation of the critical field: the spin transi-
tion is due to the simultaneous reduction of the Fermi velocity
and increasing of the electron electron repulsion. In the y-axis
we report the energy E in units of g(r, 0), for a starting value
vF = 2g(r, 0).
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Fig. 2. Scaling of the interaction with the magnetic field for
a short range of interaction r = 0.1. Each value of g(ω) is
renormalized with respect to the value at zero magnetic field
(ωc = 0).

in Figure 2 (g4 ∝ g(r, ωc)). We can also observe that the
long range component of this interaction is less affected
by the growing field Figure 3.

III) The backscattering (g1) is strongly reduced by the
magnetic field and it gives a smaller contribution to the
physics of the system when the magnetic field increases.
Also in this case the effect is smoothed if the interaction
has long range but is however strong.

IV) The forward scattering (g2) between opposite
branches has a strong reduction if we consider the short
range component while the effect is not so clear if we take
into account long range interactions.

The dependence of the coupling constants gi on the
magnetic field shows a competitive effect of the current
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——— g�r,Ωc�

Fig. 3. Scaling of the interaction with the magnetic field for a
long range of interaction r = 2. Each value of g(ω) is renormal-
ized with respect to the value at zero magnetic field (ωc = 0).

localization against the reduction of the characteristic
length σω .

The localization of the electrons on the opposite edges
of the wire is responsible for the strong reduction of the
two constant g2 and g1, especially when we consider a
short range interaction. The localization is clearly seen in
equation (2), where we introduced x0 as a function of the
momentum, i.e. of the drift velocity. So we can conclude
that electrons with opposite drift velocities are localized in
the opposite edges and a reduction in the interaction has
to be observed, due to the distance between the opposite
currents. Obviously this discussion is not valid if the range
of the interaction is not finite.

The effects of the localization on the coupling con-
stants are partially mitigated by the reduction of the
length scale σω due to the growth of the magnetic field.
The typical length of the system reduces with the mag-
netic field and increases the effective charge density of the
electron liquid. As we know, all coupling constants depend
on g(r, ωc) and follow its behavior when the magnetic field
increases. However, just the interaction between electrons
in the same branch is really enhanced by the magnetic
field if we take in account the localization.

Because of the discussed failure of the TL model for
a long range interaction, in order to obtain the following
results we limit ourselves to the small range (r) case.

3.3 The critical exponent α

Because of our knowledge of the coupling constants we are
ready to approach the problem of calculating the critical
exponent α which characterizes the transport properties
of the 1D electron systems. In fact, from the transport
measurements it is possible to evaluate the tunnel density
of states with its typical power law dependence. Usually
the backscattering effect is not included in the models [27]
or is taken in to account as a perturbation [8], so that here
we do not consider g1 more. The role of g2 is very crucial
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Fig. 4. The critical exponent calculated following textbooks
in the limit of exactly solvable model: the range of interaction
determines either a vanishing or a divergent α.

in order to determine the critical exponent α [12] which
characterizes the linear temperature dependence of the re-
sistance above a crossover temperature Tc in a TL liquid.
When g2 vanishes the so called chiral Luttinger liquid with
also α null appears (in that case the spin-charge separation
of excitation is present but no correlation characterizes the
Ground State).

The dependence of α on the magnetic field is our main
prediction and strongly depends on the effective range of
interaction. In the calculation we introduced the field-
dependent coefficients in equation (10) [13]. In Figure 4
we show the strong suppression of α when the magnetic
field increases for a small range potential. Results were
obtained for values of the magnetic field ωc < ωd because
as we show in the next section the behaviour of the TL liq-
uid is strongly modified in the high magnetic field regime.
So we can discuss the behaviour of the critical exponent
just in the weak magnetic field limit and in an intermedi-
ate one for a very short range interaction. For a very low
magnetic field we can calculate

α = α0 − α0




A
4 − 2πv0

F

(A + 2πv0
F )ω2

d

−
1
4 − 4�k2

F

meωd

ω2
d



ω2
c

where A = g0σ0√
πLy

and v0
F = �kF

me
. In the intermediate

regime, where 1/4 < ωc/ωd < 3/4, the critical exponent
reduces as follows

α ≈ α0e
−η ωc

ωd

where the constant η is a quite complicated function de-
pending on A, v0

F and kF . This behaviour is clearly seen
in Figure 5. Now we can answer the question, how the
magnetic field alters the density of states exponents in
the limit of short range interaction: the attenuation of the
forward scattering between opposite branches due to the

Fig. 5. The critical exponent calculated the intermediate
regime, where 1/4 < ωc/ωd < 3/4, the log-log plot shows the

agreement with the exponential behaviour α ≈ α0e
−η

ωc
ωd .

localization of the edge states is responsible for the reduc-
tion of the critical exponent. This effect dominates and
characterizes the TL liquid below a value of the magnetic
field where the spin polarization crossover takes place. At
higher fields, as we discuss in the next section, the spin
polarization causes a further reduction of α.

In Figure 4 we also show the critical exponent calcu-
lated for a long range interaction by using the TL model.
As we discussed at the end of Section 2, the TL model fails
when it is applied to the long range interaction because it
intrinsically refers to a short range interaction. The diver-
gent behaviour of the exponent when the magnetic field
increases confirms the failure of the model in treating the
long range interaction.

3.4 Impurity and backward scattering

Now we want to shortly discuss how the magnetic field
acts on the TL liquid when also an impurity is present in
the wire. We do not give details about calculations dis-
cussed in references [15,20] where the problem is mapped
onto an effective field theory using bosonization and then
approached by using a Renormalization Group analysis
(for a treatement based on the Functional Renormaliza-
tion Group, see [28]). The usual calculations start from a
TL model with a scattering potential at the middle point
of the wire (x = 0 and y = 0) in which only forward scat-
tering is included as electron electron interaction. Two
opposite limits are usually considered: the weak poten-
tial limit and the strong potential or weak tunneling limit.
The calculation usually starts from the transmission prob-
ability obtained for non-interacting electrons with a Dirac
delta model for the impurity (V (y) = V0δ(y)) with

|t|2 ≈ 1
1 + ( V0

�vF
)2

.

As discussed by Kane and Fisher [20] the Born approx-
imation can be used in the small barrier limit for non-
interacting electrons. This hypothesis allows us an easy
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calculation of the term which plays a central role in the
scattering: V (2kF ) i.e. the Fourier transform of the po-
tential at 2kF . In fact [29] the terms which represent
scattering with momentum transfer q � 2kF do not af-
fect the conductance in any noticeable way, because they
do not transfer particles between kF and −kF . On the
other hand, the terms which represent scattering with
|q| 	 2kF are expected to affect the conductance, because
they change the direction of propagation of the particles.
So we introduce a potential in order to describe the im-
purity localized at the center of the wire

V (x, y) = U0
σ0

R0
e

x2+y2

R2
0

where R0 and U0 represent, respectively, the range and
the strength of the impurity potential.

V (2kF ) =
√

2 V0R0e
−kF

2
(
2 R2

0+ γω
2

σω2

)

√
1

2 R2
0

+ 1
σ2

ω
σω

2
.

The strong reduction of the electron backward scattering
due to the impurity depends on the magnetic field and is
clearly due to the discussed localization of the edge states.
This allows us to consider the weak potential limit, in
order to proceed to the Renormalization Group analysis.
The RG equation for V = V (2kF ) can be found as follows:

dV

d�
=

(
1 − 1

2
(Kρ + Kσ)

)
V = (1 − gK)V

where E = E0e
−	 is the renormalized cut-off and E0 is the

original one. In absence of magnetic field we can conclude
that in our case, where gK < 1 corresponding to repul-
sive electron electron interaction, V (�) scales to infinity.
Thus at very low temperature (T = 0) we have a perfect
reflection. However we can write a formula for the weak
potential limit which gives the conductance as a function
of V0, gK and the temperature T if the temperature is
T 
 0

GWL =
e2

h

(
1 − c0V

2
0 T 2gK−2 + ...

)
(13)

where ... represent higher orders in V and T as in refer-
ence [15]. As we know from the previous discussion the
magnetic field acts on equation (13) by modifying both gk

and V0. The formula equation (13) rescales the conduc-
tance to 0 (total reflection) for gK < 1 and temperature
below a threshold temperature. In the limit of validity of
the equation (13) we define the threshold temperature as
the one for which the conductance vanishes

Ts ≈ (c0V
2
0 )−

1
2gK−2 .

As we show in Figure 6 we obtain a strong reduction of
the value of Ts, due to the reduction of the single parti-
cle backscattering and to the rescaling of gK which ap-
proaches the value 1 corresponding to the marginal case
of free electrons.

Fig. 6. The strong reduction in the value of the threshold tem-
perature T , due to the reduction of the single particle backscat-
tering and to the rescaling of gK . The values are related to the
value T0, corresponding to the threshold temperature at zero
magnetic field.

4 Magnetic induced phase transition:
The spin polarization

In this section we want to discuss what happens at very
strong magnetic field when a spin transition takes place
in a low dimensional electron liquid.

The spin behaviour of an electron liquid in the presence
of a growing transverse magnetic field was studied with
some details in QDs. In 1996 Klein et al. [30–32] measured
the position of the conductance peaks as a function of the
magnetic field in a large QD in the Coulomb Blockade
regime [33]. The positions of the peaks, due to a single
electron tunneling, allowed them to measure the ground
state (GS) energy of a many electron QD. The growth of
the magnetic field yields a crossing between energy levels
so that also the GS has a different spin polarization. From
the measurements Klein et al. could deduce that when the
magnetic field is above a threshold value, the spins flip one
by one and the orbital momentum increases.

This phenomenon has a quite general explanation in
the Hartree-Fock approximation and gives a very inter-
esting phases succession by increasing magnetic field. In
general we can calculate the spin transition field corre-
sponding to the first spin flip in the dot, and a second
“critical field” corresponding to the flip of the last spin.

Below we show that the magnetic field induced spin
polarization takes place also in QWs and discuss the theo-
retical explanation in the general case. The physical mech-
anism which induces the transitions is very simple: the ki-
netic energy, proportional to the Fermi velocity, is strongly
reduced by the magnetic field while the electron electron
repulsion is strongly enhanced by the growing field, espe-
cially the repulsion between electrons with opposite spins
(this is due to the Hund’s rule).
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For any model with constant interaction we can find
a general condition for the spin flip and we obtain that
the electron spins flip all at the same critical field. The
discrepancy between the observed data and the prediction
of this model will be better discussed in a following article
and is due to the failure of the constant interaction model
especially for the dot. The condition in order to allow a
spin flip is

vF (ωc)δk = g⊥4 (ωc) − g
‖
4(ωc).

We explain in details the case of the electrons near the
Fermi surface and the opposite one of the electrons in the
bottom of the subband at k = 0, as we show in Figure 7.
The two electrons at the Fermi surface can flip their spins
only by jumping from the kF = ±Nδk/4 doubly occu-
pied to the nearest empty levels ±(kF + δk). This tran-
sition is energetically provided if the growth in kinetic
energy 2vF δk is equal to the reduction in interaction en-
ergy with one half of the remaining (N−2) having spin up
and the other half with spin down (2(g⊥4 (ωc) − g

‖
4(ωc))).

In the same way we can discuss what happens for two
electrons which jump from the bottom of the subband
k = 0 to the first empty state, which now has all the lev-
els singly occupied, so that the difference in kinetic energy
is 2vF (N

2 − 1)δk, while the gain in interaction energy is
given by the spin flip (N − 2)(g⊥4 (ωc)− g

‖
4(ωc)). Thus, we

can conclude that all the spins flip at the same critical
value of the magnetic field, provided we can consider the
interaction as a constant.

This very simple explanation fails if we assume non
linear subbands or a long range interaction. In a future
article, we will discuss this mechanism in more detail by
taking in account also the long range interaction. Here we
just want to suggest that the spin polarization takes place
and it has some effects on the interaction parameter: g⊥i
disappears and the Fermi wavevector doubles yielding a
further reduction of g1 and g2. We limit ourselves to show
how the strong magnetic field has the effect of reducing the
Fermi velocity and increasing the electron electron repul-
sion until a critical phenomenon (spin transition) occurs.
In Figures 1 and 8 we show the critical field from the cross-
ing between kinetic and repulsion energy. We can conclude
that a short range of interaction gives a lower critical field
than a long range interaction. In the figure we just show
the dependence of the critical field on the magnetic field
and on the range of the interaction. In Figure 9 we report
the different regimes in the magnetic field-number of elec-
trons plane, showing the various behaviours of the elec-
tron system in the wire when the magnetic field increases.
This diagram is done in analogy with the ones obtained
experimentally and theoretically for large quantum dots.

In a future article we will also discuss in some details
the chiral Luttinger liquid in a ferromagnetic state analo-
gous to a spinless system. There, it could be interesting to
analyze the spin and charge excitations, in analogy with
the quantum dots and the quantum hall ferromagnets.

Fig. 7. A) Unpolarized state with each state doubly occupied.
B) Electrons at the Fermi surface flip their spins by jumping
from the kF = ±Nδk/4 doubly occupied to the nearest empty
levels ±(kF + δk): First Splin Flip. C) Electrons at the bottom
of the subband k = 0 flip their spins by jumping to the first
empty state: last spin flip. D) The fully polarized state.
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Fig. 8. Graphic calculation of the critical field for a long range
interaction: the spin transition is due to the simultaneous re-
duction of the Fermi velocity and increasing of the electron
electron repulsion.

5 Conclusions

In this work we have analyzed some properties of a quan-
tum wire when a strong magnetic field is present. Most of
the effects of the magnetic field are due to the rescaling
of the electron electron interaction and the Fermi veloc-
ity. While the Fermi velocity always decreases with the
magnetic field, the repulsive interaction between electrons
suffers the competitive actions of the edge state localiza-
tion and the characteristic length reduction.
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We have described how the growth of a transverse mag-
netic field modifies the transport properties of a quantum
wire under the hypothesis that the latter behaves as a 1
dimensional electron system. In this case, i.e. the one of
Luttinger liquids, the tunneling transport properties are
due to the large value of the critical exponent α.

At a low magnetic field the usual Luttinger liquid be-
havior is predicted with some effects due to backscatter-
ing. When the magnetic field increases there is a strong
reduction of backscattering, while for very high fields also
forward scattering between opposite branches vanishes
and a chiral Luttinger liquid appears. During the growth
of the magnetic field the critical exponent is strongly re-
duced. A further rise of the field can cause the spin polar-
ization which takes place as in a large QD, i.e. it does not
depend on Zeeman or spin orbit effects but is due to the
combined effect of the interaction and the magnetic field.

We also have discussed how the presence of one im-
purity can affect the conductance in the wire. The back-
ward scattering reduction and the rescaling of the electron
electron interaction could favor the weak potential limit
(strong tunneling) by raising the temperature at which
the wire becomes a perfect insulator (G = 0).

In the future we wish to analyze further the possible
extension of this formalism to the study of carbon nan-
otubes and discuss with more detail the properties of a
Luttinger liquid in a fully polarized state.

This work is partly supported by the Italian Research Min-
istry MIUR, National Interest Program under grant COFIN
2002022534.

Appendix A: Comparison between Coulomb
interaction and model

In this appendix we discuss the difference between the
Fourier transforms of the Coulomb interaction and of the
model (Eq. (11)).

We point out that the potential in the form of equa-
tion (11) allows exact integration, in order to obtain the
Fourier transform, and it regularizes the divergence ap-
pearing in the Coulomb potential. This function could be
optimized varying the range parameter r, so that it could
be quite similar to the Coulomb potential. The function
g(δk, ωc) is plotted for a very short range (r = 0.1) and
for various values of magnetic field in Figure 10.

The Coulomb potential is not so easy to integrate:
we give its transform obtained by a numerical integra-
tion with a sort of regularization near the divergence, and
normalized with respect to the value obtained at zero mag-
netic field (g(0, 0) = 1). Also in this case we show in Fig-
ure 10 the Fourier transform for various values of magnetic
field.

Now we can conclude that the model fits well the
Coulomb interaction, if we choose a short range param-
eter: Figure 10 shows this good agreement.

Fig. 9. A qualitative phase diagram in the plane magnetic
field-number of electrons. We show that increasing the mag-
netic field we have the standard case, the backscattering sup-
pression zone, the chiral liquid and the spin polarization. The
Number of electrons in the vertical axis in this case is a free
choice of the authors, in general it has to be coherent with the
L longitudinal dimension of the wire.

Fig. 10. a) On the left, the Fourier transform for various val-
ues of magnetic field of the model of interaction with a short
range (0.1). b) On the right, the Coulomb potential case ob-
tained with a numerical calculation and normalized with re-
spect to the value obtained at zero magnetic field (g(0, 0) = 1).
A comparison shows a good agreement and an analogous mag-
netic field dependence.

We can conclude that a magnetic field in the limit of
short range gives

g(0, ωc) ≈ g(0, 0)
√

ωT

ω0

so that we have the strongest interaction between electrons
with quite similar momentum. From Figure 10a and Fig-
ure 10b we can also argue that the function V (δk) decays
very rapidly when δk increases for high magnetic fields.
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13. For a review see J. Sólyom, Adv. Phys. 28, 201 (1979)
and J. Voit, Rep. Prog. Phys. 57, 977 (1994)

14. A.H. MacDonald, Phys. Rev. Lett. 64, 220 (1990); X.-G.
Wen, Phys. Rev. Lett. 64, 2206 (1990); X.-G. Wen, Phys.
Rev. B 41, 12838 (1990); X.-G. Wen, Phys. Rev. B 43,
11025 (1991); Int. J. Mod. Phys. B 6, 1711 (1992); U.
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